

VECTOR SURVEILLANCE IN NEW JERSEY

EEE, WNV, SLE, LAC, DENV, CHIK and ZIKV

Prepared by Lisa M. Reed, Diana Carle and Dina Fonseca

Center for Vector Biology, Rutgers University

CDC WEEK 26: 24 June to 30 June, 2018

This New Jersey Agricultural Experiment Station report is supported by Rutgers University, Hatch funds, funding from the NJ State Mosquito Control Commission and with the participation of the Department of Health, Department of Agriculture and of the 21 county mosquito control agencies of New Jersey.

Culiseta melanura and Eastern Equine Encephalitis

SITE/Boxes	Inland or Coastal	Historic Population Mean	Current Weekly Mean	Total Tested* (Collected)	Total Pools Tested* (Submitted)	EEE Isolation Pools	MFIR
Bass River (Burlington Co.)/5	Coastal	0.03	0.00	0	0		
Green Bank (Burlington Co.)/25	Coastal	2.01	0.08	8 (10)	2 (3)		
Corbin City (Atlantic Co.)/25	Coastal	0.72	0.12	30 (33)	3 (4)		
Dennisville (Cape May Co.)/50	Coastal	3.04	0.06	237	7		
Winslow (Camden Co.)/50	Inland	1.29	1.64	753	17		
Centerton (Salem Co.)/50	Inland	1.64	0.52	128	5	1	7.812
Turkey Swamp (Monmouth Co.)/50	Inland	0.54	0.00	19 (27)	3 (4)		
Glassboro (Gloucester Co.)/50	Inland	0.34	0.32	65	4		

*Current week (in parentheses) results pending. ‡ corrected from previous week NC=no collection

Remarks: First positive EEE pool was detected in a pool of *Cs. melanura* collected on 26 June at the Centerton traditional resting box site. This is the earlier positive EEE pool collected in the past 20 years. See graph next page for potential implications. Last year, a total of 18 positive EEE pools, all in *Culiseta melanura* were detected, along with 6 positive horses and no human cases. Currently for the 2018 season, there is one detection of EEE among submitted mosquito pools.

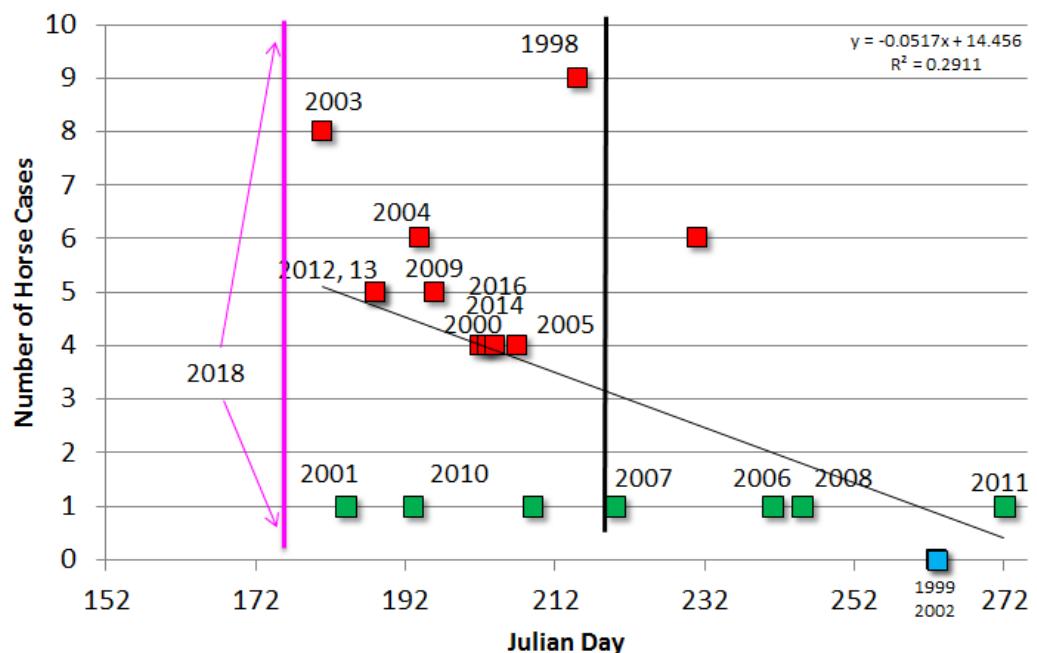
Statewide, 2272 *Cs. melanura* from 118 pools have been tested, with one positive pool detected for an overall *Cs. melanura* MFIR of 0.440. 2240 specimens in 209 pools from 11 other species have also been tested, with no positives detected. Overall MFIR for all species statewide is 0.222.

Traditional Resting Box Sites: 1240 *Cs. melanura* from 42 pools have been tested (plus three pools totaling 13 to be tested) in 2018 for EEE. One EEE positive pool have been detected from the Centerton site on the western side of the state.

County	Trap types*	Additional <i>Cs. melanura</i> trapped by counties			
		Pools	Mosquitoes	Positives	MFIR
Atlantic	CO2, RB	8	306		
Bergen	RB	1	3		
Burlington	CDCL	8	417		
Cape May	GR, RB	37	118		
Cumberland	RB	2	15		
Monmouth	RB	1	8		
Ocean	CDCL, RB	11	102		
Passaic	RB	1	1		
Salem	CDCL	2	2		
Sussex	ABC	5	60		
TOTAL		76	1032		

EEE. EEE is nearly always fatal for those horses without a complete vaccination history. Horses in New Jersey that have gone down in the past with EEE have either an incomplete vaccination history or NO vaccination history. Note that Florida is experiencing early and continued EEE activity with horse and now 1 human case.

Horse owners are urged to make sure their horses are up to date on their vaccinations. Horse cases are known to occur through October and sometimes into November (see link below). Other sensitive species are non-native birds, such as Ostriches/Emus and Gallinaceous birds such as pheasants of Eurasian origins.

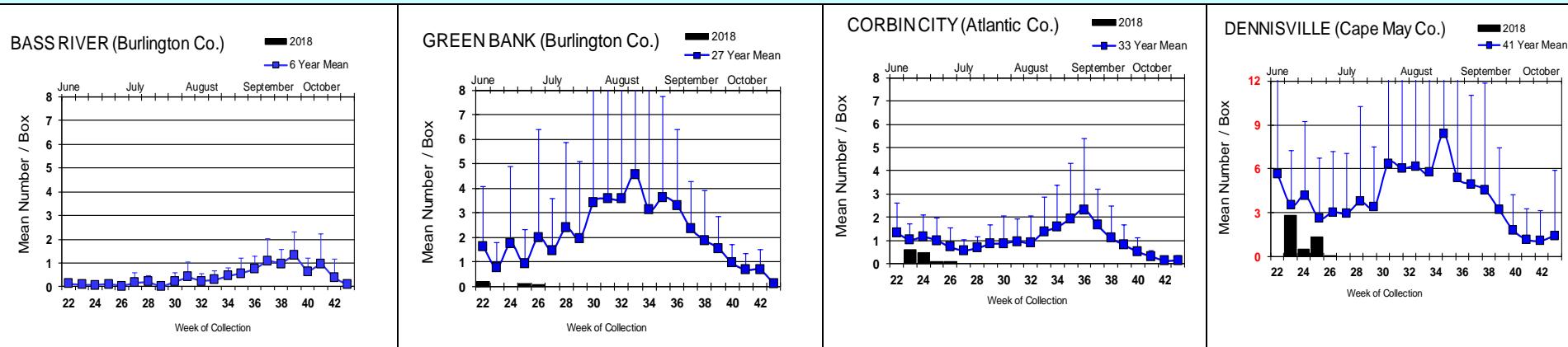

Horses and Vaccinations: The fate of unvaccinated equids reinforces the necessity of maintaining a vaccination schedule for arboviruses. For vaccination schedules recommended by the American Association of Equine Practices, see:

http://www.aaep.org/vaccination_guidelines.htm

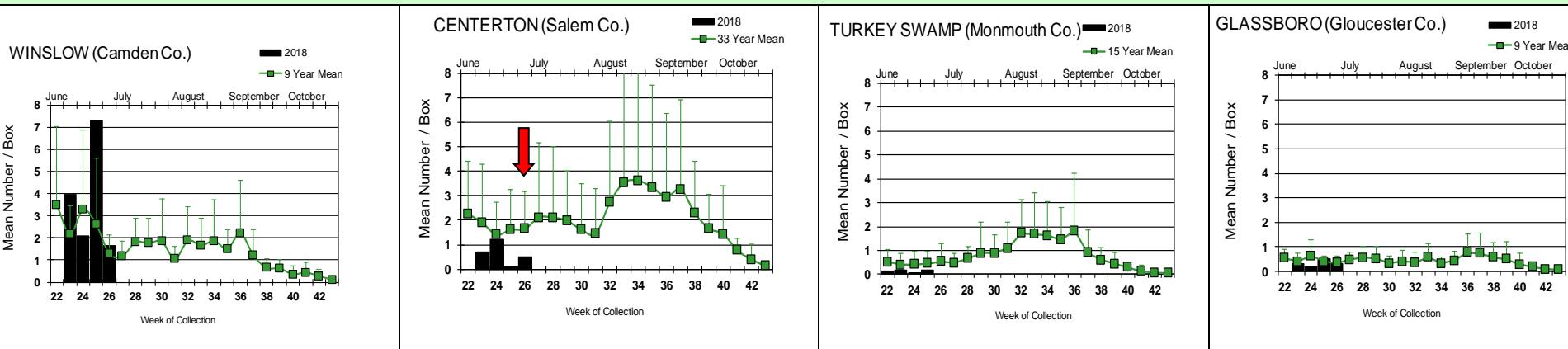
The graph to the right represents NJ EEE data with the first detection of the virus graphed as Julian date against the number of horse cases that occurred each year from 1998 to present. Around the beginning week of August, where the black line is drawn, we generally get one or no horse cases (exception was 2017, where a late detection was associated with 6 horse cases). This year, first detection occurred on 26 June – the PINK line. This line is the earliest for this graph, and may suggest that we may see multiple horse cases in NJ this year. Horse owners are urged to make sure their livestock/pets are up to date on vaccinations.

Additional County-set *Cs. melanura*: Counties maintain trap sites for *Cs. melanura* in other areas, using a variety of traps. No positives have been collected at these sites.

Horses and Humans: Currently, there is no horse or human cases reported. Last year, there were 6 horses detected with



Additional Species: Eleven additional species were tested for EEE. No positives were detected.


Species other than <i>Cs. melanura</i>	Pools	Mosquitoes	Positives	MFIR
<i>Aedes cantator</i>	2	2		
<i>Aedes sollicitans</i>	1	1		
<i>Anopheles bradleyi</i>	1	6		
<i>Anopheles punctipennis</i>	2	7		
<i>Anopheles quadrimaculatus</i>	1	1		
<i>Coquillettidia perturbans</i>	15	205		
<i>Culex erraticus</i>	4	21		
<i>Culex pipiens</i>	141	1785		
<i>Culex salinarius</i>	23	151		
<i>Culex</i> spp.	18	51		
<i>Culiseta inornata</i>	1	10		
State Total	209	2240		

Culiseta melanura Populations

Coastal

Inland

The first positive *Culiseta melanura* pool was collected from the traditional resting box site at Centerton, representing the earliest collection dates from the past twenty years. Populations at the resting boxes have been decreasing after an early season population boom. But past experience at these sites show that despite low population numbers, EEE activity can be detected, similar to yellow fever detection.

 = Positive pool(s) detected (red = melanura, purple = other species).

EEE in US (2018 cumulative cases): (Black or Red = previous + new reported cases occurring)

- equine: FL(29/1 mule)
- mosquito pools: FL(2) NJ(1) RI(3)
- sentinel: FL(71/6 owl emus)
- human: FL(1)

West Nile Virus Positive Organisms in US, 2018

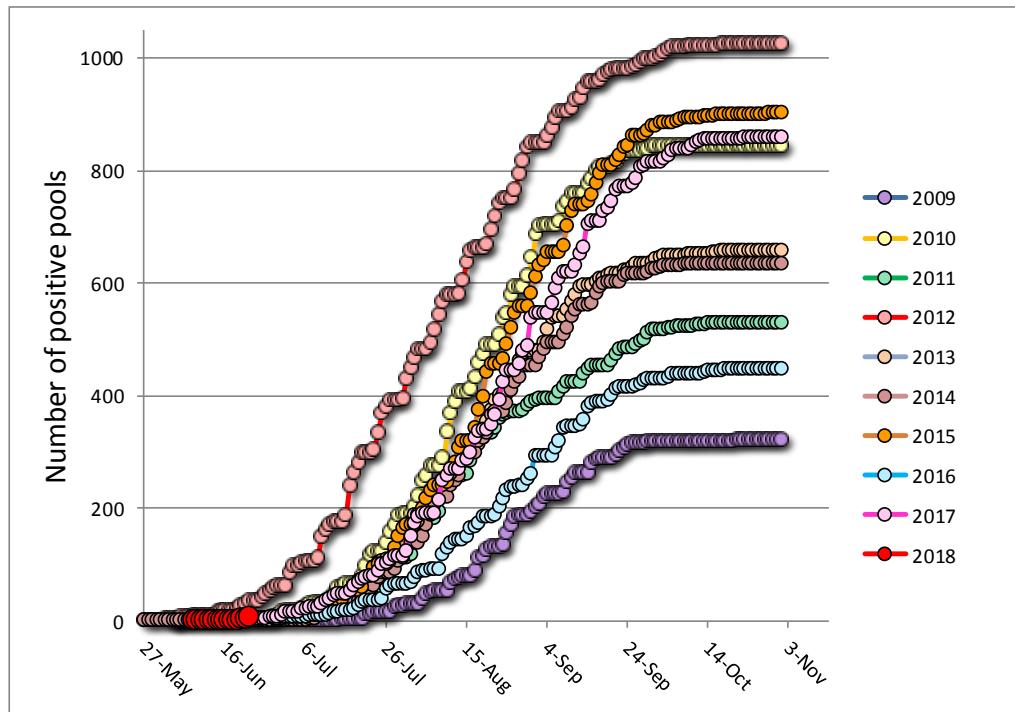
West Nile in US (2017 cumulative cases): Single black values I indicate no change from previous week. Black values / red values equals previous week/**New totals**. Note: Data reported by all states should be considered provisional and subject to change. Sources for this table can be found [here](#).

	Birds	Mosquito Pools	Sentinels	Horses	Humans
Alabama					0
Alaska					
Arizona	0	7	0	0	1
Arkansas		0			0
California	21/34	10/31	0	0	4/9
Colorado		0			0
Connecticut		1			0
Delaware					
DC					
Florida			27/28	0	0
Georgia		1			
Hawaii					
Idaho	0	1/2		0	0
Illinois		36/63		0	1
Indiana	0	2		0	0
Iowa					
Kansas		0		0	0
Kentucky				0	0
Louisiana	0	0		0	0
Maine		0			0
Maryland	0	0		0	0
Mass.		2		0	0
Michigan	2	1/6		0	0
Minnesota					
Mississippi					
Missouri		0		0	0

	Birds	Mosquito Pools	Sentinels	Horses	Humans
Montana				0	0
Nebraska		0		0	0
Nevada					
New Hampshire					
New Jersey		1/7		0	0
New Mexico					0
New York					
North Carolina					
North Dakota	2	1		0	1/2
Ohio		10/26		0	0
Oklahoma					
Oregon	0	1	0	0	0
Pennsylvania	0	16/55		0	0
Rhode Island					
South Carolina					
South Dakota		1			1
Tennessee					
Texas		27/58			
Utah					
Vermont		0		0	0
Virginia					
Washington	0	1/3		0	0
West Virginia					
Wisconsin	2/3	1/3		0	0
Wyoming					

* Can include other species (e.g., dogs, cows) reported positive.

Protocol: New Jersey Department of Health (NJDH Public Health Environmental and Agricultural Laboratories, PHEAL) and the Cape May County Department of Mosquito Control tests mosquito pools using RT-PCR Taqman techniques.


Mosquito Species Submitted and Tested for West Nile Virus through 29 June 2018

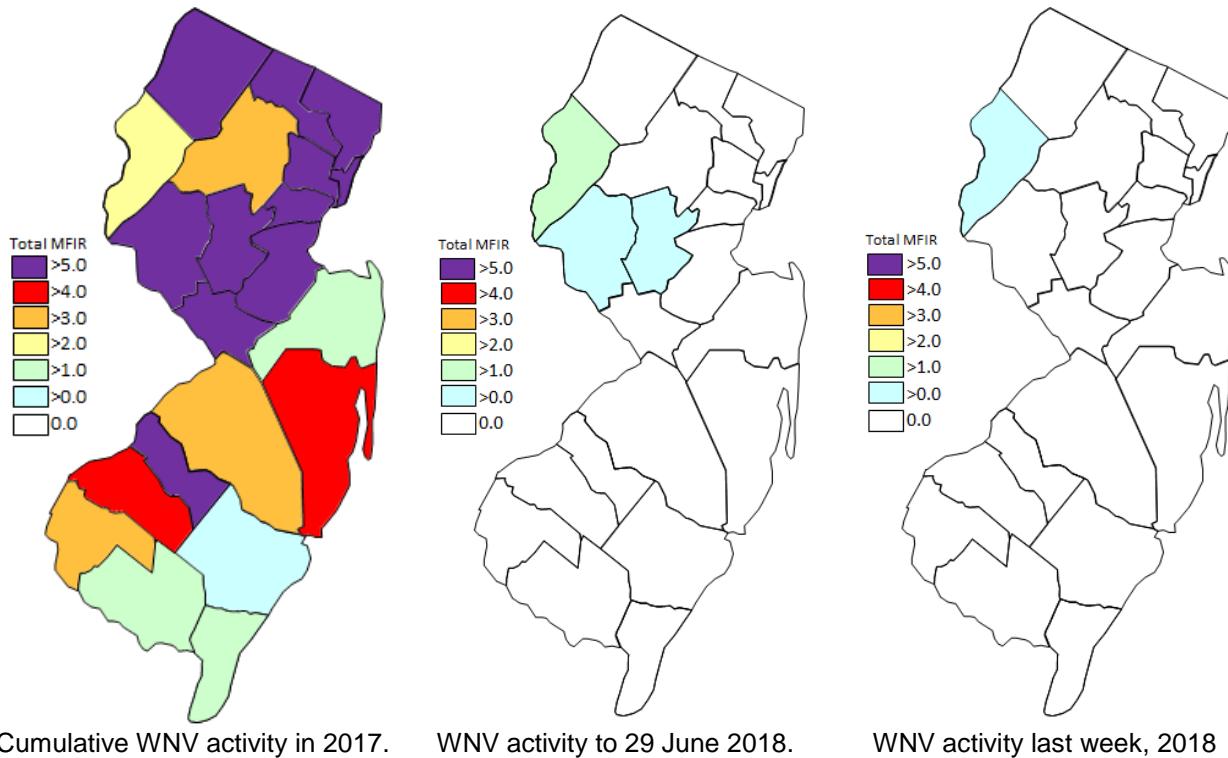
Species	Pools	Mosquitoes	Positives	MFIR
<i>Aedes albopictus</i>	90	355		
<i>Aedes atropalpus</i>	9	33		
<i>Aedes canadensis canadensis</i>	13	72		
<i>Aedes cantator</i>	5	50		
<i>Aedes grossbecki</i>	2	10		
<i>Aedes japonicus</i>	110	660		
<i>Aedes sollicitans</i>	4	9		
<i>Aedes sticticus</i>	1	1		
<i>Aedes triseriatus</i>	29	57		
<i>Aedes trivittatus</i>	2	49		
<i>Aedes vexans</i>	7	157		
<i>Anopheles bradleyi</i>	2	7		
<i>Anopheles punctipennis</i>	11	40		
<i>Anopheles quadrimaculatus</i>	27	691		
<i>Coquillettidia perturbans</i>	14	198		
<i>Culex erraticus</i>	3	12		
<i>Culex pipiens</i>	156	2126		
<i>Culex restuans</i>	213	2060		
<i>Culex salinarius</i>	27	267		
<i>Culex</i> spp.	498	19830	7	0.353
<i>Culex territans</i>	1	1		
<i>Culiseta melanura</i>	101	1769		
<i>Psorophora columbiae</i>	1	2		
<i>Psorophora ferox</i>	12	149		
Grand Total	1338	28605	7	0.245

Remarks: To date, 1338 pools of 28,605 mosquitoes from 23 species have been tested. A total of seven positive WNV pools have been detected, all in *Culex* spp and found in Hunterdon, Somerset, and Warren. First positive WNV pool was detected in *Culex* spp. on 7 June 2018 in Warren County and continuing the trend of first detection in the northern part of the state. Last year, the first positive *Culex* Mix pool was detected in Sussex County on 12 June.

Humans, Horses and Wild Birds: Currently, no horse or human cases of WNV have been detected. In 2017, eight human cases of WNV were detected and two horse cases were detected. For further information, see <http://www.nj.gov/health/cd/statistics/arboviral-stats/>.

Birds are no longer routinely tested in New Jersey.

Above is a graph showing cumulative number of positive pools for the previous 9 years, inclusive of the most active (2012) and least active (2009) years. The red series near the bottom of the graph represents this year.


WNV Results by County through 29 June 2018.

County	Species	Pools	Mosquitoes	Positives	MFIR
Atlantic		24	739		
	<i>Aedes canadensis canadensis</i>	2	36		
	<i>Aedes japonicus</i>	1	5		
	<i>Aedes vexans</i>	1	20		
	<i>Coquillettidia perturbans</i>	2	29		
	<i>Culex erraticus</i>	1	9		
	<i>Culex pipiens</i>	2	135		
	<i>Culex salinarius</i>	1	24		
	<i>Culex spp.</i>	1	36		
	<i>Culiseta melanura</i>	11	336		
	<i>Psorophora ferox</i>	2	109		
Bergen		20	1500		
	<i>Culex spp.</i>	20	1500		
Burlington		1	5		
	<i>Culiseta melanura</i>	1	5		
Camden		38	1803		
	<i>Aedes albopictus</i>	2	3		
	<i>Aedes japonicus</i>	1	9		
	<i>Culex spp.</i>	17	1036		
	<i>Culiseta melanura</i>	17	753		
	<i>Psorophora ferox</i>	1	2		
Cape May		598	4662		

	<i>Aedes albopictus</i>	57	110		
	<i>Aedes atropalpus</i>	9	33		
	<i>Aedes canadensis canadensis</i>	6	10		
	<i>Aedes cantator</i>	2	2		
	<i>Aedes japonicus</i>	60	204		
	<i>Aedes sollicitans</i>	1	1		
	<i>Aedes sticticus</i>	1	1		
	<i>Aedes triseriatus</i>	20	39		
	<i>Aedes vexans</i>	1	1		
	<i>Anopheles bradleyi</i>	1	6		
	<i>Anopheles punctipennis</i>	3	5		
	<i>Anopheles quadrimaculatus</i>	25	650		
	<i>Coquillettidia perturbans</i>	2	2		
	<i>Culex erraticus</i>	2	3		
	<i>Culex pipiens</i>	141	1785		
	<i>Culex restuans</i>	183	1292		
	<i>Culex salinarius</i>	21	115		
	<i>Culex spp.</i>	16	43		
	<i>Culex territans</i>	1	1		
	<i>Culiseta melanura</i>	44	355		
	<i>Psorophora ferox</i>	2	4		
Cumberland		6	132		
	<i>Aedes albopictus</i>	1	10		
	<i>Aedes vexans</i>	1	65		
	<i>Anopheles punctipennis</i>	2	8		
	<i>Anopheles quadrimaculatus</i>	1	40		
	<i>Psorophora</i>	1	9		
Gloucester		4	65		
	<i>Culiseta melanura</i>	4	65		
Hudson		27	1563		
	<i>Culex spp.</i>	27	1563		
Hunterdon		64	3183	1	0.314
	<i>Culex spp.</i>	64	3183	1	0.314
Mercer		44	1206		
	<i>Aedes albopictus</i>	3	56		
	<i>Aedes canadensis canadensis</i>	1	6		
	<i>Aedes japonicus</i>	9	49		
	<i>Aedes vexans</i>	3	69		
	<i>Culex pipiens</i>	3	44		
	<i>Culex restuans</i>	6	252		
	<i>Culex spp.</i>	19	730		
Middlesex		40	1463		
	<i>Culex spp.</i>	40	1463		
Monmouth		99	1492		
	<i>Aedes albopictus</i>	21	168		
	<i>Aedes canadensis canadensis</i>	2	7		
	<i>Aedes cantator</i>	3	48		
	<i>Aedes grossbecki</i>	2	10		

	<i>Aedes japonicus</i>	7	27		
	<i>Aedes sollicitans</i>	3	8		
	<i>Aedes trivittatus</i>	2	49		
	<i>Aedes vexans</i>	1	2		
	<i>Anopheles punctipennis</i>	5	26		
	<i>Culex salinarius</i>	4	108		
	<i>Culex</i> spp.	38	994		
	<i>Culiseta melanura</i>	5	20		
	<i>Psorophora ferox</i>	6	25		
Morris		74	2448		
	<i>Culex</i> spp.	74	2448		
Ocean		43	453		
	<i>Aedes japonicus</i>	7	19		
	<i>Aedes triseriatus</i>	2	4		
	<i>Coquillettidia perturbans</i>	5	84		
	<i>Culex</i> spp.	17	241		
	<i>Culiseta melanura</i>	12	105		
Passaic		39	404		
	<i>Aedes albopictus</i>	2	3		
	<i>Aedes japonicus</i>	9	56		
	<i>Aedes triseriatus</i>	1	4		
	<i>Culex pipiens</i>	7	158		
	<i>Culex restuans</i>	7	83		
	<i>Culex</i> spp.	12	99		
	<i>Culiseta melanura</i>	1	1		
Salem		64	887		
	<i>Aedes albopictus</i>	4	5		
	<i>Aedes canadensis canadensis</i>	1	1		
	<i>Aedes japonicus</i>	10	96		
	<i>Aedes triseriatus</i>	6	10		
	<i>Anopheles bradleyi</i>	1	1		
	<i>Anopheles punctipennis</i>	1	1		
	<i>Anopheles quadrimaculatus</i>	1	1		
	<i>Coquillettidia perturbans</i>	5	83		
	<i>Culex pipiens</i>	3	4		
	<i>Culex restuans</i>	2	13		
	<i>Culex</i> spp.	23	541		
	<i>Culiseta melanura</i>	6	129		
	<i>Psorophora columbiae</i>	1	2		
Somerset		50	2072	2	0.965
	<i>Aedes canadensis canadensis</i>	1	12		
	<i>Aedes japonicus</i>	2	34		
	<i>Culex</i> spp.	47	2026	2	0.987
Sussex		40	1332		
	<i>Culex restuans</i>	15	420		
	<i>Culex salinarius</i>	1	20		
	<i>Culex</i> spp.	24	892		
Warren		63	3196	4	1.252

<i>Aedes japonicus</i> <i>Culex</i> spp.	4 59	161 3035	4	1.318
Grand Total	1338	28605	7	0.245

Saint Louis Encephalitis (SLE) to 29 June 2018.

New Jersey will be primarily testing for SLE this year only when adjacent states show human activity (Cape May tests mosquitoes in the Cape May lab independently). SLE has had previous activity in New Jersey, most notably in 1964 and 1975 (CDC's SLE [website](#)), the latter prompting the surveillance reporting by Rutgers. SLE is a flavivirus and has a similar transmission pattern to West Nile, with *Culex* species as the predominant vectors.

No pools of SLE have tested positive for 2018. No human cases have been reported.

County	Species	Pools	Mosquitoes	Positives	MFIR
Burlington		14	664		
	<i>Culex</i> spp	14	664		
Cape May		156	1826		
	<i>Culex pipiens</i>	141	1785		
	<i>Culex</i> spp.	15	41		
Grand Total		170	2490		

La Crosse Encephalitis (LAC) to 29 June 2018.

New Jersey will be primarily testing for LAC this year only when adjacent states show human activity (Cape May tests mosquitoes in the Cape May lab independently). New Jersey has had 3 cases of this encephalitic

disease since 1964 (see CDC's LAC [website](#)). The mortality is low but like other encephalitides, LAC can have both personal (lasting neurological sequelae) and economic impacts. LAC is a bunyavirus with a transmission cycle involving mosquitoes such as *Aedes triseriatus* and small mammals such as squirrels and chipmunks. LAC can not only infect *Aedes albopictus* but transovarial transmission was also demonstrated. (Tesh and Gubler 1975 Laboratory studies of transovarial transmission of La Crosse and other arboviruses by *Aedes albopictus* and *Culex fatigans*. American Journal of Tropical Medicine and Hygiene 24(5):876-880).

No pools of LAC have been tested yet for 2018. No human cases have been reported.

County	Species	Positives		MFIR
Burlington		1	27	
	<i>Aedes japonicus</i>	1	27	
Grand Total		1	27	

Dengue (DENV) to 29 June 2018.

New Jersey will be selectively testing for DENV (including serotypes) this year. Dengue has not had a history of local transmission here in New Jersey, but each year, travelers can bring virus back from areas in the world with virus activity. This is significant as humans are NOT dead-end hosts and thus there is the potential for local transmission (i.e., New Jersey mosquitoes biting a sick person and then biting and transmitting the disease to someone else) to be established. DENV is a flavivirus but unlike WNV, *Aedes* mosquitoes are predominant vectors. In New Jersey, *Aedes albopictus* is a candidate for local transmission. There are 4 serotypes tested for Dengue.

Note Same pools of *Ae. albopictus* are tested for the four serotypes of Dengue as well as Chikungunya.

No pools of Dengue have been tested yet in 2018. There are currently 3 travel-related human cases in NJ.

County	Species	DENV1		DENV2		DENV3		DENV4		Pos.	MFIR
		Pool	Mos.	Pool	Mos.	Pool	Mos.	Pool	Mos.		
Middlesex		2	12	2	12	2	12	2	12		
	<i>Aedes albopictus</i>	2	12	2	12	2	12	2	12		
Grand Total		2	12	2	12	2	12	2	12		

Chikungunya (CHIK) to 29 June 2018.

New Jersey will be selectively testing for CHIK this year. Chikungunya is similar in symptoms to Dengue, a "breakbone" fever and has a low mortality rate. But this virus has had recent worldwide activity, and in the past year has come to the Western Hemisphere. As with Dengue, transmission can occur when a mosquito bites an infected human, then bites an uninfected human who subsequently becomes ill. CHIK is an alphavirus with *Aedes* mosquitoes as potential vectors. In New Jersey, *Aedes albopictus* is the mosquito of interest.

No pools of CHIK have been tested yet in 2018. There are currently 2 travel-related human cases in NJ.

County	Species	Pools	Mosquitoes	Positives	MFIR
Middlesex		2	12		
	<i>Aedes albopictus</i>	2	12		

Grand Total	2	12		
--------------------	----------	-----------	--	--

Zika (ZIKV) to 29 June 2018.

New Jersey will be selectively testing for ZIKV this year. Zika is an emerging arboviral threat with significant health consequences for fetuses and recent activity in the Western Hemisphere. Humans are potential hosts that can transmit through sexual activity. ZIKV is a flavivirus with *Aedes* mosquitoes as potential vectors. In New Jersey, *Aedes albopictus* is the mosquito of interest.

No pools have tested positive in 2018. There are currently 4 travel-related human cases in NJ.

County	Species	Pools	Mosquitoes	Positives	MFIR
Cape May		54	107		
	<i>Aedes albopictus</i>	54	107		
Middlesex		2	12		
	<i>Aedes albopictus</i>	2	12		
Grand Total		56	119		